

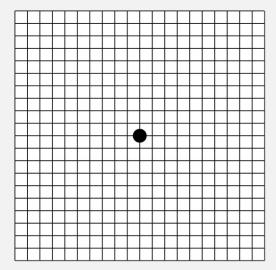
AmslerTouch: Self-testing Amsler Grid Application for Supporting a Quantitative Report of AMD Symptoms

Donghoon Shin

Seoul National University

BACKGROUND

Age-related Macular Degeneration & Amsler Grid testing


Age-related Macular Degeneration (AMD)

- Age-related macular degeneration (AMD) is a prevalent chronic disease led by damage of macula
- According to Jeon et al., AMD is a highly prevalent disease in society, where 6.62% of the South Korean population are suffering from the symptoms of AMD
- It is widely known that the symptom often accompanies disastrous symptoms, such as blurred vision or vision loss, as well as psychological vulnerability
- Since little or no effective treatment for treating AMD exists, the most feasible and cost-effective management of AMD is to prevent further development of symptoms, necessitating importance of diagnosis

Amsler grid testing

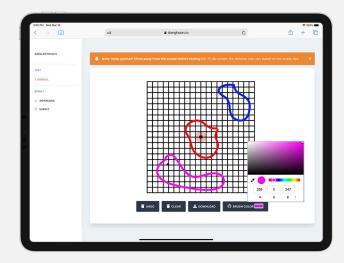
- Amsler grid testing is the most prevalent AMD testing since the 1940s, widely used by medical practitioners to diagnose AMD
- Consisting of dozens of squares as a grid, Amsler grid helps users report distorted areas or blurred regions in sight verbally to the medical practitioners

Amsler grid

Limitation of Amsler grid & Computational approach

- However, paper-based AMD testing had been shown inaccessible and unsuccessful in terms of precise diagnosis
- Thus, previous studies have applied novel input methods that enable remote, accurate testing
- Yet, these approaches are limited in their efficiency and generalizability, since such techniques required costly devices that are not easily available

Name	Description		
NGRID (Mohaghegh et al., 2016)	Head-mounted Amsler-grid app		
3D TEST (Kim et al., 2 020)	Implemented with 3D screen and polarized glasses		


Examples of computational approach for Amsler grid testing

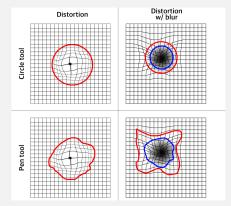
SYSTEM DESIGN

AmslerTouch: Self-testing Amsler Grid Application for Supporting a Quantitative Report of AMD Symptoms

AmslerTouch

- In this paper, I propose AmslerTouch, an interactive web-based Amsler grid testing app that can easily be used with any existing devices (e.g., tablet, desktop)
- AmslerTouch allows users to use both touch- and mouse-based interactions to ensure its generalizability
- Based on the literature, I applied several design considerations in order to ensure the usability of AmslerTouch

Keyscreen of AmslerTouch


Literature review & design considerations

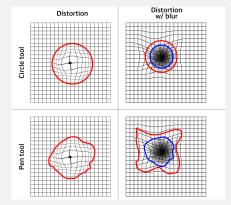
The system should offer both (i) fixed-shape tool and (ii) free-shape tool	The system should let users distinguish between different types of symptoms		
In most cases, I identified that the region of symptoms is c ircular or ellipse, which implies the need for annotating wit h a circle-shaped tool	AMD is a heterogeneous disease in terms of symptoms, w here more than one visual symptom often appears		
Yet, their symptoms differ a lot across patients, which req uires to offer them a tool for drawing freely	Thus, it is reasonable to let users note each symptom diffe rently to let them distinguish each symptom		
The system should let users computationally pass their diagnosis data to others	The system should make the user focus on the center of Amsler grid		
My system ultimately aims to facilitate communication bet ween a patient and medical practitioner. On such an account, it is important for the system to offer a reportable format of drawings	It is extremely important to have patients center-align thei r vision while taking a test		

1. Interaction methods: Circle & pen tool for drawing

- To ensure that users may draw both (i) burden-free and (ii) precisely, I designed two interaction methods:
 (i) circle tool and (ii) pen tool
- (i) Circle tool: Stemming from the idea that most of the reported regions are circle in shape, the circle tool focuses on intuitive use by letting users easily draw.
 Specifically, once a user keep pressing on a specific region, a circle is created and enlarged until the users stop holding

Exemplar usage of circle/pen tool

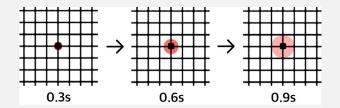
Procedure ISCIRCLE(initialPosition):		
timer ← fire		
while timer.isValid and elapsedTime < 500ms do		
if initialPosition.distanceTo(currentPosition) > 50px		
then		
return false		
end if		
end while		
return true		
endprocedure		
L		


Algorithm for automatically detecting and switching tool

1. Interaction methods: Circle & pen tool for drawing

- (ii) Pen tool. Like a real-world pencil, pen tool lets users freely draw without any constraint. This tool makes users draw every type of shape precisely
- To let users switch between Circle tool and Pen tool easily, I applied an algorithm to change a tool based on the user's initial point of the cursor and point of the cursor after 500ms
- User can also undo/redo their action by clicking the button

The HCI Society of Korea

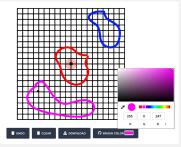

Exemplar usage of circle/pen tool

Procedure ISCIRCLE(initialPosition):		
timer ← fire		
while timer.isValid and elapsedTime < 500ms do		
if initialPosition.distanceTo(currentPosition) > 50px		
then		
return false		
end if		
end while		
return true		
endprocedure		

Algorithm for automatically detecting and switching tool

2. A diffusing animation for inducing users' focus

- It is important to keep the user's vision at the center of Amsler grid while testing. Thus, I designed a spreading circular animation to keep users focused on the center
- At the center of the grid, a circle keeps growing every 1 second, with the opacity going down, accordingly making as if it is diffusing and having users focus on it



An animation for inducing user's center-aligned focus

Color picker for distinguishing symptoms Tooltip view for keeping them with a fixed distance Download function

- With using color picker and easily altering colors for each symptom, users can easily draw without any confusion
- In order to make users stay away from the screen, I added a tooltip view on top of Amsler grid
- After completion, user can use download function to electronically report their results to relevant stakeholders (e.g., medical practitioners)

Color picker for drawings. Users can designate a different color for each drawing

Note: Keep yourself 55cm away from the screen before testing (for 75 dpi screen; the distance may vary based on the screen dpi) 💦 🗙

Tooltip view for inducing users to keep designated distance away from the screen

Download function

PRELIMINARY EVALUATION

Heuristic evaluation

Heuristic evaluation

- Due to the limited resource and difficulty of recruiting participants, I decided to run heuristic evaluation for the preliminary evaluation of my interface
- Even though some specialized heuristics are suggested to be applied to a specific domain, I followed the original checklist suggested by Nielsen, since
 - (i) it has long been proved efficient across various domains of interaction design
 - (ii) little or no specialized checklist exists for our domain
- The process was conducted with one evaluator, which lasted about 2 hour

Results

- Insufficient description exists for how the user may initiate using the system
- The text on tooltip view is too small to recognize
- There is no perceivable distinction between Clear and Undo button
- No detailed cue exists on how the drawing algorithm works

Issue	Severity	Ease of Fixing
Insufficient description exists for how the	3	1
user may initiate using the system	5	
The text on tooltip view is too small	3	1
to recognize	5	
There is no perceivable distinction	2	1
between Clear and Undo button	2	
No detailed guideline exists on how	2	2
the drawing algorithm works	2	
It is difficult to pick a color for markups;	2	3
lack of scaffolded options	2	
Tooltip does not induce user to stay	3	3
away for a designated amount of distance	5	
User cannot setup directory for	1	3
downloading the markup	I	

Results of the heuristic evaluation

DISCUSSION

Discussion & Limitation

Extensibility to Remote Diagnosis

- The system initially assumed physical settings, such as hospitals, with a patient and a medical practitioner co-located
- Yet, since the system fully runs online and may make use of the internet network, I believe that the system is extensible to remote clinic situations where each stakeholder is connected to collaborate remotely

Limitation & Future Work

- 1. Necessity of reflecting real-world users' needs
 - 1. Even if we elicited key considerations from the literature, it is also important to understand what the end-users (i.e., patients) truly requires toward an interactive Amsler grid app
- 2. Evaluation
 - 1. This study adopted a heuristic evaluation method without evaluating the system with real-world users
 - 2. In order to fully understand how patients perceive the system and gain feedback from them, clinical testing and interview sessions would be required

References

David B. Elliott and John Flanagan. "Assessment of Visual Function". In: Clinical Procedures in Primary Eye Care (Third Edition). Ed. by David B. Elliott. Third Edition. Edinburgh: Butterworth-Heinemann, 2007, pp. 29-81. ISBN: 978-0-7506-8896-3.

Andrew M Fine et al. "Earliest symptoms caused by neovascular membranes in the macula". In: Archives of ophthalmology 104.4 (1986), pp. 513-514.

Youjin Hwang et al. "Design Guidelines of a Computer-Based Intervention for Computer Vision Syndrome: Focus Group Study and Real-World Deployment". In: Journal of Medical Internet Research 23.3 (2021), e22099.

Jin Ha Kim, Key Hwan Lim, and Yun Taek Kim. "A Novel Method for Hyperacuity Measurement". In: Journal of the Korean Ophthalmological Society 61.2 (2020), pp. 175-182.

Ka Hou Christien Li et al. "The current state of mobile phone apps for monitoring heart rate, heart rate variability, and atrial fibrillation: narrative review". In: JMIR mHealth and uHealth 7.2 (2019), e11606.

Laurence S Lim et al. "Age-related macular degeneration". In: The Lancet 379.9827 (2012), pp. 1728-1738.

Anat Loewenstein et al. "Replacing the Amsler grid: a new method for monitoring patients with age-related macular degeneration". In: Ophthalmology 110.5 (2003), pp. 966-970.

Navid Mohaghegh, E Ghafar Zadeh, and Sebastian Magierowski. "Wearable diagnostic system for age-related macular degeneration". In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2016, pp. 6006-6009.

Jakob Nielsen. "Heuristic evaluation". In: Usability inspection methods (1994).

Sang Jun Park et al. "Age-related macular degeneration: prevalence and risk factors from Korean National Health and Nutrition Examination Survey, 2008 through 2011". In: Ophthalmology 121.9 (2014), pp. 1756-1765.

Barry W Rovner et al. "Preventing depression in age-related macular degeneration". In: Archives of general psychiatry 64.8 (2007), pp. 886-892.

Monique S Roy. "Vision loss without Amsler grid abnormalities in macular subretinal neovascularization". In: Ophthalmologica 191.4 (1985), pp. 215-217.

Ronald A Schuchard. "Validity and interpretation of Amsler grid reports". In: Archives of ophthalmology 111.6 (1993), pp. 776-780.

THANK YOU!

DONGHOON SHIN

UNDERGRADUATE DEPT. OF ELECTRICAL AND COMPUTER ENGINEERING SEOUL NATIONAL UNIVERSITY

🔀 ssshyhy@snu.ac.kr

donghoon.io

2022.02.09.WED - 02.11.FRI / 온라인 + 서울대 아시아연구소

HCI KOREA 2022

DIGITAL EXPERIENCE TRANSFORMATION

: 전화위복(轉禍爲福)

